Dahlberg’s Bilinear Estimate for Solutions of Divergence Form Complex Elliptic Equations
نویسندگان
چکیده
Ω ∇u · v, where u is harmonic in the domain Ω ≡ {(x, t) ∈ Rn+1 : t > φ(x)}, with φ Lipschitz, and where v ∈ W loc is vector valued. He showed that the bilinear form (1.1) is bounded by the L2 norm of the square function plus the non-tangential maximal function of u, times the same expression for v. In the present note, we generalize Dahlberg’s Theorem to variable coefficient divergence form elliptic operators. To be precise, let
منابع مشابه
A sharp Hölder estimate for elliptic equations in two variables
We prove a sharp Hölder estimate for solutions of linear two-dimensional, divergence form elliptic equations with measurable coefficients, such that the matrix of the coefficients is symmetric and has unit determinant. Our result extends some previous work by Piccinini and Spagnolo [7]. The proof relies on a sharp Wirtinger type inequality.
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملUniqueness of Weak Solution for Nonlinear Elliptic Equations in Divergence Form
We study the uniqueness of weak solutions for quasilinear elliptic equations in divergence form. Some counterexamples are given to show that our uniqueness result cannot be improved in the general case.
متن کاملMultiple Solutions for Elliptic Equations Involving a General Operator in Divergence Form
In this paper, exploiting variational methods, the existence of three weak solutions for a class of elliptic equations involving a general operator in divergence form and with Dirichlet boundary condition is investigated. Several special cases are analyzed. In conclusion, for completeness, a concrete example of an application is presented by finding the existence of three nontrivial weak soluti...
متن کاملOn biharmonic maps and their generalizations
Abstract. We give a new proof of regularity of biharmonic maps from four-dimensional domains into spheres, showing first that the biharmonic map system is equivalent to a set of bilinear identities in divergence form. The method of reverse Hölder inequalities is used next to prove continuity of solutions and higher integrability of their second order derivatives. As a byproduct, we also prove t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008